فزِع العالم في اليومين الفائتين بصور الفيضانات التي ضربت ألمانيا، بعدما تسبب انهيار الأمطار بغزارة في حدوث كارثة طبيعية غير مُعتاد رؤيتها في القارة الأوروبية بأكملها. كارثة الفيضانات التي مُنيت بها ألمانيا، دمرت حتى الآن آلاف البيوت وقتلت حوالي 150 شخصًا، فضلًا عن فُقدان الاتصال بحوالي 1500 شخص وعدم التأكد إن كانوا موتى أم أحياء.

في السنوات القليلة الماضية كانت الحكومة الألمانية دائمًا ما تتصدر المشهد بقيادة أنجيلا ميركل عندما تحدث مشكلة أو كارثة في أوروبا، وبالرغم من إعلان الحكومة، تجهيز حزمة من المساعدات المالية لضحايا الكارثة مع العمل على خطة لإعادة إعمار ما أتلفه الفيضان؛ فإنها لا تزال حتى الآن عاجزة عن السيطرة على الوضع؛ حتى أن أرمين لاشيت رئيس وزراء ولاية شمال الراين حيث وقع الفيضان صرح قائلًا: «الوضع لم يصل حتى الآن إلى مرحلة يمكن القول فيها أن الفيضان بدأ في الانحدار… يوجد خبر سيئ كل ساعة».

ففي صباح يوم أمس انهار أحد السدود الضخمة التي كانت تخزن المياه في ولاية شمال الراين؛ فيما يعتري الجميع الخوف حاليًّا، لأن الولاية بها أكثر من 10 سدود أخرى قد تكون على حافة الانهيار، ومن الممكن أن تزيد من حجم الكارثة بشكل مُفجع حال حدث ذلك في الساعات القادمة.

لكن.. كيف بدأ كل ذلك؟

شهدت ولاية شمال الراين وولاية راينلاند أمطارًا غزيرة بطول 4-6 بوصة، خلال النصف الثاني من يوم 14 يوليو (تموز) وحتى نهاية يوم 15 يوليو الحالي. الكمية نفسها التي تشهدها الأراضي الألمانية لكن خلال شهر كامل، وليس في خلال 24 ساعة فقط.

جدير بالذكر أن أصابع الاتهام بعد وقوع أي كارثة طبيعية غير عادية خلال السنوات أو الفترات الماضية كانت دائمًا ما تتجه إلى «التغير المناخي»، وفي الحقيقة أنه في الأسبوعين الماضيين ضربت أوروبا وأمريكا درجات حرارة عالية وصلت إلى 49 درجة مئوية، ويعتقد العلماء أن هذه الموجة هي المُحرك الرئيسي للفيضان.

مدينة ألمانية قبل وبعد الفيضان، مصدر الصورة: بي بي سي 

ولمزيد من التوضيح، يجب أن تعلم، أن ارتفاع درجات الحرارة يؤدي دائمًا إلى تكثيف بخار المياه في الهواء على شكل سحب، وعندما تزداد كثافة السحب في منطقة معينة وتبدأ في التصادم تبدأ الأمطار بالتبعية في الهطول مباشرة.

لذا من الطبيعي، أن يؤدي ارتفاع درجة الحرارة بشكل كبير عن المعتاد إلى زيادة كثافة السحب التي تنعكس على زيادة كمية المطر؛ إذ تشير بعض التقارير العلمية أن زيادة درجة واحدة في الحرارة يؤدي إلى زيادة كمية الأمطار بنسبة 6%.

عامل آخر ربما يكون أحد أسباب هطول الأمطار بهذه القوة والسرعة، وهو انخفاض درجة الحرارة في قطبي الكرة الأرضية في الربع الأول من هذه السنة مرتين أو ثلاثة عن السنوات الماضية، وهو ما يؤدي بالتبعية إلى ارتفاع سرعة الهواء في خطوط العرض الوسطى التي تتعامد على غرب قارة أوروبا في الصيف وفي الخريف. وسواء كان السبب ارتفاع درجة الحرارة أو زيادة سرعة الرياح؛ فإن تغير المناخ يبقى هو السبب الرئيسي في هذه الكارثة.

على جانب آخر، تعد ألمانيا واحدة من أكثر الدول الأوروبية التي تساهم في أزمة تغير المناخ، التي يشكل انبعاث غاز ثاني أكسيد الكربون في الهواء العامل الأهم فيها. فالدولة الصناعية أكبر دول الاتحاد الأوروبي وتسهم في انبعاث غاز ثاني أكسيد الكربون بمقدار 8.84 طنًّا متريًّا في السنة، على عكس بريطانيا التي قامت فيها ثورة صناعية والتي ينبعث منها فقط حوالي 5.78 طنًّا متريًّا في السنة!

إحصائية انبعاث ثاني أكسيد الكربون في ألمانيا وبريطانيا وفرنسا، مصدر الصورة: داتا كومون

الطبيعة الجغرافية الألمانية أيضًا تسببت في تسهيل حدوث الكارثة؛ لا سيما وأن الأراضي الألمانية يجري بها خمسة أنهار كبيرة (إلبه، الراين، الدانوب، فيزر، إمس) بالإضافة إلى ثلاثة أنهار متوسطة (أيدر، بين، شيلي)، والأمطار تسبب ارتفاع منسوب الأنهار، وعندما تهطل الأمطار بغزارة؛ تفيض الأنهار بشكل كارثي كما حدث في الأيام الماضية.

ومما يُعاب على الحكومة الألمانية هو عدم اتخاذ إجراءات احترازية لتجنب أخطار حدوث الفيضانات، خاصة وأنه خلال العقود الخمس الماضية، ارتفعت نسبة الفيضانات في الجزء الغربي من البلاد، وآخرها كان عام 2002 وإن لم يكن بخطورة ما يحدث حاليًّا.

الكارثة تصل إلى بلجيكا وهولندا

مساء يوم أمس الجمعة، أعلنت الحكومة البلجيكية حالة الحداد في البلاد بسبب ارتفاع ضحايا الفيضان الذي بدأ في ألمانيا ووصل إلى الأراضي البلجيكية إلى 20 شخصًا، فضلًا عن اختفاء 20 آخرين لم يُعثر عليهم حتى الآن.

فقد اندفعت المياه في شوارع بلجيكا خلال الأسبوع طوال الماضي بعد حدوث سيول من الأمطار الغزيرة بشكل يومي ولا تنقطع على مدار الساعة؛ ووصفت الحكومة منسوب الأمطار أنها حادثة تتكرر كل 200 عام فقط!

وتسببت تلك الأمطار في فيضان المياه الموجودة في نهر الميز الذي يتدفق في مدينة لييج الواقعة في شرق بلجيكا على الحدود الألمانية، ولا يزال النهر يزيد في الارتفاع مهددًا بزيادة منسوب الفيضان في الساعات المقبلة بشكل قد لا يمكن السيطرة عليه كما هو الوضع في ألمانيا.

خريطة الفيضان، مصدر الصورة: بي بي سي

وفي السياق نفسه أعلنت حكومة مدينة فينلو الهولندية الواقعة على الحدود الهولندية الألمانية إخلاء 7 آلاف منزل وبناية في المدينة، ما سيؤثر في حوالي 16 ألف شخص، سيكونون عرضة لأخطار الفيضانات في الأيام القادمة في حال عدم نجاح الجهود الأوروبية في السيطرة عليه.

فهل تتوحد جهود العالم بعد هذه الكارثة للحد من أزمة تغير المناخ التي لن ينجو منها أحد على هذا الكوكب؟ وهل تزعزع هذه الكارثة، إيمان معتنقي نظرية المؤامرة الذين لا يصدقون بوجود التغير المناخي؟

البيئة

منذ شهرين
5 أسباب تفسر لك لماذا لا يصدق الكثيرون التغير المناخي؟

المصادر

Germany: Vulnerabilities – Flood probability trends in the past The German territory is comprised of five large river basins (the Elbe, upper Danube, Rhine, Weser and Ems), three medium-scale basins in the coastal area (Eider, Schlei/Trave and Warnow/Peene), and small parts of the Oder and Meuse basins. Of the large river basins, only the Ems and Weser basins lie entirely within the borders of Germany. The Rhine, upper Danube and Elbe are international rivers and their drainage basins have large parts outside Germany. Overall, it can be summarized that the flood hazard in Germany increased during the last five decades, particularly due to an increased flood frequency. Changes in the flood behavior in northeast Germany are small. Most changes were detected for sites in the west, south and centre of Germany. Further, the seasonal analysis revealed larger changes for winter compared to summer (32). Entire Germany From an analysis of data for the period 1951-2002 covering the entire country (the catchments of the Danube, the Rhine, the Elbe, the Weser, the Ems, and the Odra), significant flood trends (at the 10% significance level) have been detected for a considerable fraction of basins. In most cases, these trends are upward; decreasing flood trends are rarely found and are not field-significant (32). Changes in flood behavior in northeast Germany are small. Most changes are detected for sites in the west, south and centre of Germany. Further, the seasonal analysis reveals larger changes for winter compared to summer. Both, the spatial and seasonal coherence of the results and the missing relation between significant changes and basin area, suggest that the observed changes in flood behavior are climate-driven (32). Weser During the last 500 years winter flood hazard in the Werra catchment (sub-catchment of the Weser) showed an increase during the last decades, whereas the summer flood hazard showed a long-term decrease from 1760 on (38). Upward trends in annual maximum flood in the Rhine and Weser basins, found for the period 1951-2002, can be attributed to trends in the winter season, since the flood regime is dominated by winter floods (32). Elbe and Odra The Elbe, Danube and Odra catchments are characterized by a relatively small influence of westerly, northwesterly and southwesterly circulation types, a larger share of high pressure systems, and the occurrence of Vb-weather regimes. The Vb-weather regime is a trough over Central Europe, which can bring long-lasting heavy rainfalls causing destructive floods in these catchments (42). This weather regime moves low pressure systems from the Gulf of Genoa northwards to Poland. Large precipitation amounts can be accumulated and may be enhanced along the northern slopes of the Alps and the mountain ranges in Central and Eastern Europe. Several destructive floods were triggered by this circulation type, as experienced for instance in the Elbe and Danube catchments in 2002 and 2005 (42). For the Elbe and middle Odra significant downward trends in the occurrence rates of winter floods and no significant trends for summer floods have been found during the 20th century. Moreover, significant variations have been found of occurrence rates for heavy floods during the past centuries and notable differences between Elbe and Odra (39). The reduction in winter flood occurrence for these rivers can partly be attributed to fewer events of strong freezing; following such events, breaking river ice at the end of the winter may function as a water barrier and enhance floods severely. In both rivers, the last ice flood occurred in 1947 (54). Reduced freezing may have been caused by warming (55) or increased pollution of river waters. Elevated winter temperatures could also have had an effect via a reduction of occurrence of frozen soil, which has low absorbing capacity (56). According to data for the period 1951-2002, changes in the flood behavior in northeast Germany are small (32). Although winter floods dominate in the Elbe, Odra and northern Danube catchments, summer floods can reach remarkable discharges as experienced in 1997, 2002, 2005 (37). Rhine The Rhine and Weser catchments are dominated by westerly, northwesterly and southwesterly circulation types with associated mid-latitude cyclone rainfall (36). Significant upward flood trends in magnitude as well as frequency have been found in the Rhine catchment at the gauges Cologne (1900 – 2002) and Bonn (20). Upward trends in annual maximum flood in the Rhine and Weser basins, found for the period 1951-2002, can be attributed to trends in the winter season, since the flood regime is dominated by winter floods (32). Between the periods 1901-1930 and 1971-200, the flood discharge, defined as the arithmetic average of the highest daily discharge during these periods, indicates an increase by about + 10 % at most gauging stations along the Rhine. This is not due to an increase of extreme peak flows but due to frequent moderate and great floods. At some gauging stations, however, the development of flood discharge shows a different, and sometimes opposite, trend (60). Southern Germany Long time series of 70-150 years of 158 gauges in southern Germany mostly revealed no trends. However, the study of the last 30 years showed significant upward trends of annual maximum flood at many gauges. Moreover, the frequency of winter floods increased since the 1970s in many basins (41). Danube The southern part of the Danube catchment is dominated high pressure systems, especially during fall and winter. Westerly, northwesterly and southwesterly circulation types are less frequent. In this region, summer floods dominate (12). An increasing frequency of winter floods is supposed to be caused by higher winter temperatures, and hence, earlier snow melting in the mountain ranges (32). Winter floods A plausible cause of the observed increase in the frequency of flood events (e.g. in southwest Germany (27) is, among others, the statistically evident increasing frequency of extreme rainfall events (28). However, this increase can only be substantiated for the winter months. Therefore, it is believed that the probability of winter floods, such as e.g. the Rhine floods, has already increased. Summer floods Summer floods, such as e.g. the floods at the Oder 1997 and the Elbe 2002, are often caused by specific general weather situation (e.g. the socalled “Vb weather condition”). Again, a number of studies substantiate at least the increased frequency of such weather conditions (29). Flood probability and circulation patterns So far, the relationship between peak discharges and atmospheric variables has been investigated for Germany only for selected regions. For the Rhine catchment, for instance, increasing trends have been found in wet circulation patterns, areal precipitation and discharge for the period 1951–2000. An even higher significance level of increasing trends was found for winter maximum discharges compared to increasing trends in annual maximum discharges (44). For the scale of Europe, a trend (significant at 10% SL) towards a reduced diversity of circulation patterns has been found, causing fewer patterns with longer persistence to dominate the weather over Europe. This indicates changes in the dynamics of atmospheric circulations which are of direct relevance to the flood hazard. Longer persistence of circulation patterns may lead to consecutive precipitation events. Although the single events may have rather low precipitation amounts, the succession of several events may lead to saturated catchment conditions. This is particularly important for winter peak discharge, which are in many cases triggered patterns with westerly winds (43). These results on changes in circulation patterns have implications for flood risk management, especially for flood design measures. A flood frequency analysis approach in which no trend in the data are assumed may underestimate discharges of extreme events (43). Germany: Vulnerabilities - Non-climatic factors In the past, extreme rainfall events have repeatedly led to flood disasters involving great damage (Rhine 1993/1994, 1995, Oder 1997 and Danube and Elbe 2002). In addition to climate influences, other factors that play an important role in the risk of flooding are reduced retention due to straightening of watercourses, the construction of weirs, the loss of water meadows and wetlands, and increased surface sealing (21,24). For example, the river Rhine has already lost four-fifth of its natural floodplains. Similarly, at the river Elbe only 15% of the natural floodplains remain (30). Moreover, agriculture causes more frequent floods by the usage of heavy machinery on arable fields and the consequent condensation of soils, which hampers the infiltration capacity. At present, the influence of these anthropogenic factors is more pronounced than climate change (21). Although the Rhine catchment has experienced widespread land use changes, significant effects on flooding could only be detected in small basins. There is no evidence for the impact of land use changes on the flood discharge of the Rhine river itself (32). These findings are in line with different studies, which found little or no influence of land use on flood discharge (33). It has been argued that the impact of land use changes on floods is a matter of spatial scale (34). In small basins land use changes can significantly alter the runoff processes, effecting flood magnitude and frequency. However, these effects are expected to fade with increasing basin scale. The general tendency of decreasing impacts with increasing basin scale does not apply to river training works. On the contrary, river training impacts are likely to increase with catchment size as there is a tendency for larger settlements and hence large-scale flood protection works at larger streams (34). The cumulative effects of river training works on floods in large basins are difficult to assess (32). Averaged across many flood events, the river training works along the Rhine have increased the flood peaks at Cologne, whereas the retention measures have decreased the peaks. Today’s flood peaks at Cologne are expected to be a few percent higher than before the extensive river training works in the 1950s (35). Germany: Vulnerabilities - The floods of 2002, 2005 and 2013 The Elbe flood catastrophe of 2002 has not been attributed to climate change in the public’s opinion (22). There is no evidence from flood observations over the last 80-150 years for recent upward trends in the occurrence rate of the extreme floods (return periods of 100 yr and more) that occurred in central Europe in July 1997 (Oder) and August 2002 (Elbe) (54). The Elbe floods alone claimed 20 lives and caused damage totaling more than EUR 9 billion (24). In 2005 floods caused a lot of damage and several casualties in the Alpine region. In southern Germany especially the river Lech, flowing from Austria through southern Germany into the Danube, caused large-scale flooding. Locally, 1/300-years water levels were reached (48). In spring 2013, heavy precipitation in Central Europe resulted in large scale floods along the Elbe and Danube. An observation-based analysis and model simulations show no evidence that climate change made heavy precipitation in the upper Danube and Elbe basins in May–June, such as observed in 2013, more likely (61). These results agree with conclusions of analyses of historical floods on the Elbe (54) and Danube (62) that no change in sum­mer floods can be observed (yet). Germany: Vulnerabilities – Future projections Among the potential negative impacts of climate change, the increased risk of flooding and the decrease in water supply during summer are of primary importance. These impacts are the result of an observed shift of precipitation from summer to winter, as well as higher evaporation owing to increased temperature. This shift is expected to become more pronounced in the future. Additionally, the probability of extreme rainfall events is increasing particularly in winter and the duration of snow cover is projected to decrease (21,23). Read more... Europe: casualties in the past The annual number of reported flood disasters in Europe increased considerably in 1973-2002 (1). A disaster was defined here as causing the death of at least ten people, or affecting seriously at least 100 people, or requiring immediate emergency assistance. The total number of reported victims was 2626 during the whole period, the most deadly floods occurred in Spain in 1973 (272 victims), in Italy in 1998 (147 victims) and in Russia in 1993 (125 victims) (2). Read more... Europe: flood losses in the past The reported damages also increased. Three countries had damages in excess of €10 billion (Italy, Spain, Germany), three in excess of 5 billion (United Kingdom, Poland, France) (2). Read more... Europe: flood frequency trends in the past In 2012 the IPCC concluded that there is limited to medium evidence available to assess climate-driven observed changes in the magnitude and frequency of floods at a regional scale because the available instrumental records of floods at gauge stations are limited in space and time, and because of confounding effects of changes in land use and engineering. Furthermore, there is low agreement in this evidence, and thus overall low confidence at the global scale regarding even the sign of these changes. There is low confidence (due to limited evidence) that anthropogenic climate change has affected the magnitude or frequency of floods, though it has detectably influenced several components of the hydrological cycle such as precipitation and snowmelt (medium confidence to high confidence), which may impact flood trends (57). Despite the considerable rise in the number of reported major flood events and economic losses caused by floods in Europe over recent decades, no significant general climate‑related trend in extreme high river flows that induce floods has yet been detected (7). Read more... Europe: projections for the future IPCC conclusions In 2012 the IPCC concluded that considerable uncertainty remains in the projections of flood changes, especially regarding their magnitude and frequency. They concluded, therefore, that there is low confidence (due to limited evidence) in future changes in flood magnitude and frequency derived from river discharge simulations. Projected precipitation and temperature changes imply possible changes in floods, although overall there is low confidence in projections of changes in fluvial floods. Confidence is low due to limited evidence and because the causes of regional changes are complex, although there are exceptions to this statement. There is medium confidence (based on physical reasoning) that projected increases in heavy rainfall would contribute to increases in rain-generated local flooding, in some catchments or regions. Earlier spring peak flows in snowmelt- and glacier-fed rivers are very likely, but there is low confidence in their projected magnitude (57). More frequent flash floods Although there is as yet no proof that the extreme flood events of recent years are a direct consequence of climate change, they may give an indication of what can be expected: the frequency and intensity of floods in large parts of Europe is projected to increase (14). In particular, flash and urban floods, triggered by local intense precipitation events, are likely to be more frequent throughout Europe (15). Read more... Adaptation strategies - Infrastructural measures The probable increase in flood frequency and the possible increase in runoff need to be taken into account in the adaptation to future climate conditions. To do this, present measures of flood protection need to be adapted. This includes sufficient flood retention on floodplains, a regulation that limits construction and other development on the likely floodplains, precaution in constructions, behavioural foresight, hazard protection and technical flood protection (21,24). Read more... Adaptation strategies - Flood Risk Management Directive The Flood Risk Management Directive explicitly relates the impacts of climate change to management of floods from surface waters and along coastlines. Bases for action and planning, such as six-year risk analyses, danger/risk maps and flood-risk management plans, are regularly adapted in light of the latest findings with regard to the impacts of climate change (23). Adaptation strategies - Insurance Insurance for flood damage is already possible. The insurance industry assesses the risk of damage to a building on the basis of a zoning system that takes into account not only the flood risk itself, but also the risk of torrential rainfall and backwater build-up. To date, however, there has been little demand for such damage policies. Nevertheless, since insurance for flood damage is a significant factor in the context of individual flood control precautions by the public, the possibility of introducing compulsory insurance for damage due to the elements, such as flooding, hail and windstorms, has already been discussed – most recently in the wake of the Elbe floods in August 2002 (24). Adaptation strategies - Emergency preparedness There are lessons to be learned from the 2002 floods for a.o. emergency preparedness. Both in the Czech Republic and in Germany, hospitals were affected by the floods. Read more... Adaptation strategies - EU Directive on flood risk management The new EU Directive on flood risk management, which entered into force in November 2006, introduces new instruments to manage risks from flooding, and is thus highly relevant in the context of adaptation to climate change impacts. The Directive introduces a three-step approach (2): Member States have to undertake a preliminary assessment of flood risk in river basins and coastal zones. Where significant risk is identified, flood hazard maps and flood risk maps have to be developed. Flood risk management plans must be developed for these zones. These plans have to include measures that will reduce the potential adverse consequences of flooding for human health, the environment cultural heritage and economic activity, and they should focus on prevention, protection and preparedness. References The references below are cited in full in a separate map 'References'. Please click here if you are looking for the full references for Germany. Hoyois and Guha-Sapir (2003), In: Anderson (ed.) (2007) Anderson (ed.) (2007) Mitchell (2003) Barredo (2009) Höppe and Pielke Jr. (2006); Schiermeier (2006), both in: Barredo (2009) Höppe and Pielke Jr. (2006), in: Barredo (2009) Becker and Grunewald (2003); Glaser and Stangl (2003); Mudelsee et al.(2003); Kundzewicz et al.(2005); Pinter et al.(2006); Hisdal et al.(2007); Macklin and Rumsby (2007), all in: EEA, JRC and WHO (2008) EEA, JRC and WHO (2008) Wang et al.(2005), in: EEA, JRC and WHO (2008) Milly et al. (2005), in: EEA, JRC and WHO (2008) Hisdal et al. (2007), in: EEA, JRC and WHO (2008) Ramos and Reis (2002), in: EEA, JRC and WHO (2008) Barnolas and Llasat (2007), in: EEA, JRC and WHO (2008) Lehner et al.(2006); Dankers and Feyen (2008b), both in: EEA, JRC and WHO (2008) Christensen and Christensen (2003); Kundzewicz et al.(2006), both in: EEA, JRC and WHO (2008) Palmer and Räisänen (2002), in: EEA, JRC and WHO (2008) Kay et al. (2006); Dankers and Feyen (2008), in: EEA, JRC and WHO (2008) Andréasson, et al. (2004); Jasper et al.(2004); Barnett et al.(2005), all in: EEA (2009) Arnell (2004); Milly et al. (2005); Alcamo et al. (2007); Environment Agency (2008a), all in: EEA (2009) Dankers and Feyen (2008), in: EEA (2009) Zebisch et al. (2005) Swart et al. (2009) Government of the Federal Republic of Germany (2010) Government of the Federal Republic of Germany (2006) Cramer et al. (2005), in: Government of the Federal Republic of Germany (2006) Bronstert, 1996, in: Zebisch et al. (2005) Caspary (2004), in: Zebisch et al. (2005) Grieser and Beck (2002); Schönwiese (2005), both in: Zebisch et al. (2005) Fricke and Kaminski (2002), in: Zebisch et al. (2005) IKSE (1996); BMU (2002), both in: Zebisch et al. (2005) Eisenreich (2005) Petrow and Merz (2009) Blöschl et al. (2007); Robinson et al. (2003); Svensson et al. (2006), in: Petrow and Merz (2009) Blöschl et al. (2007), in: Petrow and Merz (2009) Lammersen et al. (2002), in: Petrow and Merz (2009) Beurton and Thieken (2009), in: Petrow and Merz (2009) DKKV (2004), in: Petrow and Merz (2009) Mudelsee et al. (2006), in: Petrow and Merz (2009) Mudelsee et al. (2004), in: Petrow and Merz (2009) Pinter et al. (2006), in: Petrow and Merz (2009) KLIWA (2007), in: Petrow and Merz (2009) Ulbrich et al., 2003, in: Petrow et al. (2009) Petrow et al. (2009) Belz et al. (2007), in: Petrow et al. (2009) Petrow et al. (2008), in: Petrow et al. (2009) www.stmug.bayern.de European Environment Agency (EEA) (2005) http://www.sueddeutsche.de; http://vorarlberg.orf.at; http://www.spiegel.de Görgen et al. (2010) Näsman et al. (2007) Ciscar et al. (2009), in: Behrens et al. (2010) Kundzewicz (2006) Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (2009) Mudelsee et al. (2003) Folland et al. (2001), in: Mudelsee et al. (2003) Bronstert et al. (2000), in: Mudelsee et al. (2003) IPCC (2012) Feyen et al. (2012) Huang et al. (2012) Görgen et al. (2010), in: International Commission for the Protection of the Rhine (ICPR) (2011) Schaller et al. (2014) Pekárová et al. (2013), in: Schaller et al. (2014) Hattermann et al. (2014) Feyen et al. (2008), in: Hattermann et al. (2014) Te Linde et al. (2011), in: Hattermann et al. (2014) Huang et al. (2015) Kreibich et al. (2015) Klijn et al. (2010); Koks et al. (2014), both in: Kreibich et al. (2015) Marco (1994); Watt (2000), both in: Kreibich et al. (2015) Petrow et al. (2006), in: Kreibich et al. (2015) Environment Agency (2010), in: Kreibich et al. (2015) Wasserhaushaltsgesetz (2009), in: Kreibich et al. (2015) Read about river floods in other countries: Europe
عرض التعليقات
تحميل المزيد